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Abstract

In this paper, we consider the generalized Camassa—Holm equation

2
u, + 2ku, — uyy + autu, = 2u .+ Ul

Under substitution ¢ = x — ¢, some new explicit periodic wave solutions and their limit forms are presented through some special
phase orbits. These periodic wave solutions tend to infinity on & — u plane periodically. Thus we call them periodic blow-up solutions.
To our knowledge, such periodic blow-up solutions have not been found in any other equations.
© 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction and main results

In 1993, Camassa and Holm [1] derived a shallow water
wave equation

u, + 2kux — Uy + 3”“)5 = 2uxuxx + Ul (1)

which is called Camassa—Holm equation or CH equation.
Eq. (1) also was derived by Dai [2] as a model equation
in hyperelastic rods.

For £ =0, Camassa and Holm [1] showed that Eq. (1)
has peakons of the form u(x,?) = ce "l For the case of
k # 0 and the wave speed ¢ = ’5, Liu and Qian [3] gave three
ways to seek the peakon of Eq. (1). For any parameter k&
and constant wave speed ¢, Liu et al. [4] showed that Eq.
(1) has peakons of the form

" Corresponding author. Tel.: +86 20 22236202; fax: +86 20 22236202.
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u(x,1) = (k+c)e - — &, 2)

which can be seen as a weak solution being similar to that
in Ref. [5-7]. In Ref. [§-13] the blow-up phenomena of Eq.
(1) were investigated. In Ref. [14] Liu et al. found two new
bounded waves, the compacton-like wave and the kink-like
wave, for Eq. (1).

In 2001, Dullin, Gottwald and Holm [15] presented a
non-linear equation

u; + couty + 3uu, — ocz(um + uthyy + 2utty) + Yl = 0. (3)

Clearly, when o> = 1 and y = 0, Eq. (3) becomes Eq. (1). In
Refs. [16-18], it was shown that Egs. (1) and (3) have many
similar properties.

In 2001, Liu and Qian [19] suggested a generalized
Camassa—Holm equation

U + 2kuy — ey + au™u, = Ut + Uy 4)
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Tian and Song [20] gave some new peaked solitary wave
solutions for Eq. (4) when m = 1,2, 3. Khuri [21] gave some
explicit expressions of the peakons and discontinuous soli-
tary waves for Eq. (4) when m = 1,2, 3. Shen and Xu [22]
showed that Eq. (4) has compactons and cusp waves for
arbitrary positive integer m. When m = 2, Eq. (4) becomes

u;, + 2kux — Uy + auzux = 2uxuxx + Ulhyy, . (5)

For the case of a =3 and k& = 0, using several special
functions, Wazwaz [23,24] obtained many explicit solitary
wave solutions.

Liu and Ouyang [25] showed that the bell-shaped soli-
tary wave and peakon coexist in Eq. (5) when a = 3 and
k=0.

In this paper, we consider Eq. (5). Through some special
phase orbits, a new class of explicit periodic wave solutions
is obtained. Since such solutions blow up periodically, they
are called periodic blow-up solutions. Also the limit forms
of these solutions are got.

In order to state our main results conveniently, for given
constant ¢, let

¢(3 —ac)

112 k:ll(a,c):T, (6)
L kzlz(a,c)zm, (7)
12
_ _ 2 _ _ 2
- l6c — 12k — ac for 6¢c — 12k — ac >0, ()
a a

_Jlale

ﬁl - 121 (9)
_ flacl

br=1\15 (10)
_Jlal(o+c])

B3 - 24 ) (11)
_Jlac|

.B4 - 24) (12)

sn z = sn(z, /) be the Jacobian elliptic function with mod-
ulus /, secz and cscz be trigonometric functions, cothz
and cschz be hyperbolic functions. On the parametric
plane a—k, we mark the locations of the /; (i =1,2)

I k k
(A1) Iy
l (Az2) O a
(Bs)
. (Bs)
(0,5) 2
(40) )
(As) (B2)
O a (B1)

(a) (b)

Fig. 1. The locations of /; (i =1,2) and regions (4,),(B;) (j=1—4) on
a — k plane. (a) for given ¢ > 0; (b) for given ¢ < 0.

and regions (4;),(B;) (j =1—4) surrounded by /; and
k-axis as Fig. 1.

Using the notations above, our main results are stated in
the following Propositions 1, 2 and Properties 1, 2.

Proposition 1. For given constant ¢ >0 and parametric
regions marked in Fig. 1a, on the solutions of Eq. (5) we have:

(1) If (a,k) € (41), then there is a periodic blow-up
solution

u(x,¢) = (1 — 2sn 2B, (x — ct)), (13)

where the modulus of sn is

o+ ]
=2 14
ki P (14)

(2) If a <0 and (a,k) €/, then there is a blow-up

solution

uy(x,1) = (1 — 2coth?, (x — ct)). (15)
(3) If (a,k) € (42), then there is a periodic blow-up

solution

us(x,t) = o — (a+ |c|) sn?B; (x — ct), (16)

where the modulus of sn is

20
ky = 4| ———. 17
P\ ar e (17)

(4) If a < 0 and (a, k) € I,, then there is a periodic blow-
up solution

ug(x,t) = —c csc? B, (x — ct). (18)
(5) If (a,k) € (43), then there is a periodic blow-up

solution

M5(X, t) = 06(2 sn_zﬁl (x - Ct) - 1)a (19)

where the modulus of sn is
o — |]
200

(6) If @ > 0 and (a, k) € I,, then there is a periodic blow-
up solution

ky = (20)

ug(x, 1) = c(2 csc®By (x — ct) — 1). (21)
(7) If (a,k) € (A44), then there is a periodic blow-up

solution

up (x, 1) = (ot +[e]) sn 2By (x — et) — |e], (22)

where the modulus of sn is

e — o
ky = . 23
P\ el +a )
(8) If @ >0 and (a,k) € I, then there is a blow-up

solution

ug(x,1) = ccsch®f, (x — ct). (24)
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Proposition 2. For given constant ¢ <0 and parametric
regions marked in Fig. 1b, on the solutions of Eq. (5) we have:

(1) If (a,k) € (By), then there is a periodic blow-up
solution —u (x, ).

(2) If @ > 0 and (a, k) € /;, then there is a blow-up solu-
tion uy(x, 7).

(3) If (a,k) € (By), then there is a periodic blow-up
solution —us(x, ).

(4) If @>0 and (a,k) € I, then there is a periodic
blow-up solution u4(x, ¢).

(5) If (a, k) € (Bs3), then there is a periodic blow-up solu-
tion —us(x, ).

(6) If @ <0 and (a,k) € I;, then there is a periodic
blow-up solution ug(x, ¢).

(7) If (a,k) € (Bs), then there is a periodic blow-up solu-
tion —u7(x,1).

(8) If @ <0 and (a,k) € I, then there is a blow-up
solution ug(x, 7).

Property 1. For given constant ¢ > 0, the solution u;(x,t)
(i =1 — 8) has the following relations:

(1°) When (a,k) €
uy(x,1).

(2°) When (a,k) € (4,) and tends to I, us(x,¢) becomes
uy(x,t). When (a,k) € (4,) and tends to /5, uz(x,?)
becomes uy(x, t).

(3°) When (a,k) € (43) and tends to I, us(x,?) becomes
ug(x,1).

(4°) When (a,k) € (44) and tends to I, us(x,t) becomes
ug(x,t). When (a,k) € (44) and tends to 1, us(x,?)
becomes ug(x, ).

(4,) and tends to I, u;(x,t) becomes

Property 2. For given constant ¢ < 0, the solutions u;(x,t)
(i = 1 — 8) have the following relations:

(1") If (a, k) € (By) and tends to [, then —u, (x, f) becomes
ua (¥, 1).
(2%) If (a, k) € (B,) and tends to /;, then —u;(x, ¢) becomes

uy(x, ). If (a,k) €
becomes ug(x,1).
(3%) If (a,k) € (B;3) and tends to /1, then —us(x, t) becomes
ug(x,1).
(47) If (a,k) € (B4) and tends to /;, then —u;(x, t) becomes
ug(x,t). If (a, k) € (Bs4) and tends to I, then —u;(x,?)
becomes ug(x, t).

(B,) and tends to /,, then —us(x,¢)

Remark 1. When ¢ =0, wu(x,f) (i=1,3
stationary solutions, and u;(x,t) (j=2,4
trivial solutions of Eq. (5).

,7) become
,8) become

Remark 2. In Propositions 1, 2 and Properties 1, 2, given
¢ >0 or ¢ <0, then we determine the lines /; and /,. If
given a and k, then under parametric condition ak < 0,
we have:

(1) If the wave speed c satisfies
1
=5 (3 V9— 24ak), (25)

then Eq. (5) has a blow-up solution u,(x, ?).
(2) If the wave speed c satisfies

1
= (3 V9 — 12ak), (26)
then Eq. (5) has two periodic blow-up solutions
us(x,t) and
uy(x,t) = —c sec’ By(x — ct). (27)
(3) If the wave speed c satisfies
1
- (3 +Vo - z4ak), (28)
2a
then Eq. (5) has two periodic blow-up solutions
ug(x,t) and
ui(x,t) = c(2 sec® By(x —ct) — 1). (29)

(3) If the wave speed c satisfies
_1 (3 +Vo— 12ak)7 (30)
a

then Eq. (5) has a blow-up solution wug(x,?). If
& =x—ct, then u;(x,t) becomes u;(¢) (i=1-38).
For given ¢ and (a,k) satisfying the conditions in
Propositions 1 or 2, we can use computer to draw
the graphs of u;(¢) (i=1-38).

Example 1. Letting ¢ =1 and a = —1, then from (6) and
(7) it follows that /;(—1,1) =2/3 and Ir(—1,1) =7/12.
Taking £ =0.8,2/3,0.6 and 7/12, respectively, then it is
seen that (a,k) = (—1,0.8) € (41), (a,k) = (—1,2/3) € I,
(a,k) =(—1,0.6) € (42) and (a,k)=(-1,7/12) € L».
Substituting these data into the expressions of u;(&)
(i=1-4), on {—u plane we draw their graphs as
Fig. 2a, b, c and d.

If let ¢=1 and a=1, then similarly we get
L(1,1)=1/3 and L(1,1)=5/12. Taking
k=0.1,1/3,0.41 and 5/12, then it is easy to see that
(@k) = (1,0.1) € (42),  (ak)=(1,1/3) €l (ak) =
(1,0.41) € (44) and (a,k) =(1,5/12) € I,. Substituting
these data into the expressions of u;(¢) (i=15-28), on
¢ —u plane we draw their graphs as Fig. 2e, f, g and h.
From Fig. 2 one can see visually that u,(&) and ug(&) blow
up at &£ =0, and others blow up periodically.

2. Preliminary

In order to derive the expressions of solutions above, we
establish a planar system corresponding to Eq. (5) and
draw its bifurcation phase portraits.

For given constant ¢, substituting

E=x—ct (31)
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Fig. 2. The graphs of u;({) (i=1-8) when ¢=1 on ¢—u plane. (a) graph of u(¢) for (a,k) =(—1,0.8) € (4;); (b) graph of uy(&) for
(a,k) = (=1,2/3) € I;; (¢) graph of us(&) for (a,k) = (—1,0.6) € (42); (d) graph of wus(&) for (a,k) =(—1,7/12) € I,; (e) graph of us(¢) for
(a,k) = (1,0.1) € (43); (f) graph of us(&) for (a,k) =(1,1/3) € l;; (g) graph of u;(¢) for (a,k)=(1,0.41) € (44); (h) graph of ug(&) for
(a,k) = (1,5/12) € L.

and u = @(¢) into Eq. (5), it follows that

! I

—c@' +2k¢' + co" +ap’¢' =2¢'¢" + ¢¢p” (32)

Integrating (32) once and letting the integral constant be
zero, we have

2
a o'
¢"(¢—c) = (2%k=c)p+3¢’ —%- (33)
Via (33), we establish the following planar system
=,
g _ 40P +(2k—c)o—h? (34)
dé — o—c '

We want to draw the bifurcation phase portraits of (34).
But the line ¢ = ¢ bring inconvenience to us. For avoiding
the inconvenience temporarily, we make transformation

d¢

dr .
Q—c

(35)

Under the transformation (35), system (34) becomes

e

dﬂ =
& y(p =), (36)
Y=t} 4 (2k—c)p — 1y
Since both (34) and (36) have the same first integral
a
V(e —e) =gt = (2k—c)p’ =h, (37)

the two systems have the same topological phase portraits
except the line ¢ =c¢. Through qualitative analysis, we
draw the bifurcation phase portraits as Figs. 3-5.

3. The derivations of main results

Substituting the expressions of u;(x,¢) (i=1-28) and
—uy(x,t), —us3(x,t), —us(x,t), —u;(x,t) and their parametric
conditions into Eq. (5), it is not difficult to see that these
expressions are solutions of Eq. (5) by using mathematical
software Maple. Now we give the derivations of these
expressions and show the relations among them. From
(8) one see that « is defined in (4;), (B;) (i=1—4) and /;

WL S
AN ”M

(a) (b)

Fig. 3. Bifurcation phase portraits of system (34) and (36) when ¢ =0. (a) a >0 and k >

4/

(c)

(d)

0;(b)a<0and k>0;(c)a<0and k£ <0;(d) a>0and k<0.
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0, 3)

Fig. 5. Bifurcation phase portraits of system (34) and (36) when ¢ < 0.

(j = 1,2). The locations of —a, —c¢, ¢ and « are marked in
Figs. 3-5.

3.1. The derivations of Proposition 1
For given ¢ > 0, from (37) and Fig. 4, we get the expres-

sions of some special orbits of system (34) and their corre-
sponding integral equations as follows.

(1) When (a,k) € (4,), the orbit passing point (—a,0)
has expression

y = £[al(o — @)(—c — @) (~o.— 0)/6]* for ¢ < —o
(38)

Substituting the expression into 3—;’ =d¢ and integrating
along the orbit, we get its corresponding integral equation
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? ds
—o0 /(= 8)(—c —5)(—o—3s)
= %\ﬂ where ¢ < —a < —c<o. (39)

Similarly we have:
(2) When a < 0 and (a,k) € /,, the orbit passing point
(—¢,0) has expression

y==%(~c—o)lal(c — 9)/6]'"* for ¢ < —c, (40)

and its corresponding integral equation

¢ ds |a|
. R— [T 41
[oo (mc—s8)\/c—s 6|é| (41)
(3) When (a,k) € (4,), the orbit passing point (—c,0)
has expression

y=£lal(@ — @)(—x— @) (—c — ) /6] > for ¢ < —c,

(42)
and its corresponding integral equation
? ds
o0 V(= 38) (=0 —8)(—c —s)
= %\ﬂ where @ < —c < —a<a. (43)

(4) When a < 0 and (a,k) € I, the orbit passing point
(—¢,0) has expression

v =*ollal(~c — 9)/6]'" for ¢ < —c, (44)
and its corresponding integral equation

la|

/(p 7\/(15—* < lel (45)
o S\/—c—s5 6"
(5) When (a, k) € (43), the orbit passing point («,0) has
expression

1/2

y==tlalp —2)(¢ +c)(o+2)/6]"" for ¢ =>a  (46)

and its corresponding integral equation

+00 dS -
/(,, VO t6+a) = \/%|f| where ¢

= o> —c> —a. (47)

(6) When @ > 0 and (a,k) € /;, the orbit passing point
(c,0) has expression

v=t(p+c)alp )/ for ¢ > e, (48)
and its corresponding integral equation
oo ds a
—— =/ 49
/q] (s+o)vs—c \/;M| (49)
(7) When (a, k) € (A4), the orbit passing point (o, 0) has
expression

1/2

y=%lalep —a)(@+a)(p+c)/6] " for ¢ =a  (50)

and its corresponding integral equation

- ds 4
/“’ \/(Soc)(s+a)(5+c):\£|5| where ¢

= o> —a> —c. (51)

(8) When a > 0 and (a,k) € I,, the orbit passing point
(0,0) has expression

y=Eopla(p +c)/6]

and its corresponding integral equation

2 for ¢ =0, (52)

o ds a
_— /g€ 53
[ A= (53
Completing the integral in (39) it follows that
_ 20 olal
1 — -
sn < p— k1> =\ 1 1], (54)
that is
20 o|al
m—Sl’l( 37](1), (55)
where
o+c
ky = P for ¢>0. (56)

Solving Eq. (55) yields

Q=o ll - 25n2< %5,1{1)] . (57)

From (31) and u = ¢(&), we obtain the periodic blow-up
solution u (x,¢) as (13).

Similarly, completing the integrals in (41), (43), (45),
(47), (49), (51), (53) and solving the equations for ¢, respec-
tively, we get u;(x,¢) (i =2,---,8) as (15), (16), (18), (19),
(21), (22) and (24). These complete the derivations of
Proposition 1.

3.2. The derivations of Proposition 2

For given ¢ <0, via (37) and Fig. 5, we obtain the
expressions of some special orbits of system (34) as follows.

(1) When (a,k) €
expression

y==la(g—a)(p+c)(p+a)/6]

(2) When a > 0 and (a,k) € I, the orbit passing point
(—¢,0) has expression

y==%(p+c)lalp )6 for ¢ =—c. (59

(3) When (a,k) € (B,), the orbit passing point (—c,0)
has expression

(B)), the orbit passing point (x,0) has

2 for p=a.  (58)
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y==%la(p+c)(@—2)(p+2)/6]" for ¢=—c.  (60)
(4) When a > 0 and (a,k) € I,, the orbit passing point
(—c,0) has expression
y=+ola(p+¢)/6)'* for ¢ > —c. (61)
(5) When (a,k) € (B;3), the orbit passing point (—a,0)
has expression
y="=%[a|(x— @) (—c— ) (—2—)/6]"* for ¢p< —a.
(62)
(6) When a < 0 and (a,k) € I, the orbit passing point
(c,0) has expression
y==4(-c—o)llal(c—9)/6]"* for ¢ <c. (63)
(7) When (a,k) € (B,), the orbit passing point (—a,0)
has expression
y==[al(—c—)(x—9¢)(—2—¢)/6]'* for ¢
< —oa. (64)
(8) When a < 0 and (a,k) € I, the orbit passing point
(0,0) has expression
v = *ollal(—c— ¢)/6]" for ¢ <0. (63)

Similar to the derivations of Proposition 1, using the
expressions above to establish integral equations,
then solving the integral equations for ¢, we get the
conclusions of Proposition 2.

3.3. The proof of Property 1
For given ¢ > 0, we have:

(1) When (a,k) € (4,) and tends to /;, from (6), (8)—(10),
(14) it follows that

a—c, py—p,, ki—1 and sn(z,1) =tanhz. (66)

Via (13) and (66), one can see that u;(x,¢) becomes
us(x,t) when (a,k) € (4,) and tends to /,. This com-
pletes the derivation of relation (1°).

(2) When (a,k) € (4,) and tends to [, from (6), (8), (10),
(11), (17) it follows that

o—c, f3—P,, ko—1 and sn(z,1)=tanhz. (67)

Through (16) and (67), one can see that us(x,) be-
comes u,(x,¢) when (a,k) € (4,) and tends to /;.

On the other hand, when (a, k) € (4,) and tends to /5,
from (7), (11), (12), (17) it follows that

o—0, f3— B4, kn—0 and sn(z,0) =sinz. (68)

From (16) and (68), one can see that u;(x, ) becomes
ug(x,t) when (a,k) € (4,) and tends to /,. This com-
pletes the derivation of relation (2°).

(3) When (a,k) € (4;) and tends to /, from (6), (8)—(10),
(20) it follows that

oa—c, f;— P, k3—0 and sn(z,0) =sinz. (69)

Via (19) and (69), one can see that us(x,¢) becomes
ug(x,t) when (a,k) € (43) and tends to /;. This implies
the correctness of relation (3°).

(4) When (a, k) € (44) and tends to Iy, from (6), (8), (10),
(11), (23) it follows that

oa—c, f3— P, ka— 0 and sn(z,0) =sinz. (70)

Via (22) and (70), one can see that u;(x,¢) becomes
ug(x,t) when (a,k) € (44) and tends to /,.

On the other hand, when (g, k) € (44) and tends to /,,
from (7), (8), (11), (12), (23) it follows that

o0—0, f3— B4, ky— 1 and sn(z,1) =tanhz. (71)

Via (22) and (71), one can see that u;(x,¢) becomes
ug(x,¢) when (a,k) € (44) and tends to /5. These show
the correctness of relation (4°). About the relations
(17)~(4") given in Property 2, the proof is similar to
that above. Here, we would not repeat it.

Remark 3. When ¢ =0, the stationary solutions can be
obtained via Fig. 3(a)—(d).

4. Conclusion

In this paper, we considered Eq. (5). We obtained some
new periodic wave solutions and their limit forms which
were given in Propositions 1, 2. One can see that the expres-
sions of these solutions are very simple and the periodic
wave solutions tend to infinity on & — u plane periodically.
To our knowledge, such solutions have not been found in
any other equations.

From previous results (see Ref. [23-25]) and our results
above, one can see that in Eq. (1) the effect of changing the
convection term uu, to u’u, causes not only the coexistence
of bell-shaped solitary wave solution and peakon solution,
but also the appearance of periodic blow-up solutions. We
think that Eq. (5) should have more complex phenomena
waiting for discovery.
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